

Multifunctional Poro-Vascular Composites for UAV Performance Enhancement

J. P. Thomas
US Naval Research Laboratory
Multifunctional Materials Branch, Code 6350
Washington, DC 20375 USA
202-404-8324; james.p.thomas@nrl.navy.mil

2nd Multifunctional Materials for Defense Workshop

July 31, 2012

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, inclu- ion of information. Send comments arters Services, Directorate for Infor ny other provision of law, no person	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 31 JUL 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	red 2 to 00-00-2012		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Multifunctional Poro-Vascular Composites for UAV Performance Enhancement				5b. GRANT NUMBER			
Elmancement				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
	• /	odress(es) ifunctional Material	s Branch, Code	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
Grantees'/Contrac	nd Multifunctional M tors' Meeting for A	Materials for Defens FOSR Program on I 2012 in Arlington, V	Mechanics of Mu	ltifunctional	Materials &		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 20	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Introduction & UAV Application
- Functional Overview
- Fluid-Phase Modeling
- Electro-Wetting Phenomena
- Fabrication & Vascular Flow Control
- Summary

Contributors: Marriner Merrill, Natalie Gogotsi, Kristin Metkus, Siddiq Qidwai, David Kessler, Mike Baur, Rick Everett, and Alberto Pique

Acknowledgement: Office of Naval Research (NRL 6.1 Core Program)

Poro-Vascular Composites

Multifunctional structural "skin" materials with surface pores and internal vascular channels filled with an ionic-liquid whose height and shape at the pore exits is actively controlled.

Key Features

- Flexible structural skin laminate with t ~ mm.
- Surface-roughness control on sub-mm scale.
- Structure-roughness multifunctionality.

Fluid-Phase Surface Morphologies

UAV Applications

Structural skin layer with active surface roughness control for drag/heat transfer tuning \rightarrow enhanced performance & energy efficiency.

Surface Roughness Effects

Surface Configuration	Normalized Heat Transfer, St/St _o	Normalized Skin Friction, C _f /C _{fo}
Flat	1.0	1.0
Dimpled	1.3-1.6	1.2-2.2
Domed	1.4-2.5	2.5-3.3

Reference: Kithcart, M.E. & Klett, D.E., J Enhanced Heat Transfer, 3(4), 1996.

Aerodynamic Notions

profile drag drag due to lift

Total Drag = (skin-friction + pressure) drag + induced drag

Skin-friction drag (C_f) versus Reynold's number (Re_L) for Flat Plates with Surface Roughness (ϵ/L)

Surface Roughness Effects

Increased roughness $(\varepsilon/L) \rightarrow$

- no effect on C_f in laminar flow regime,
- significant increase in C_f in turbulent regime,
- transitions to turbulent boundary-layer flow at lower Re.

Aerodynamics Notions (cont'd)

profile drag drag due to lift

Total Drag = (skin-friction + pressure) drag + induced drag

Pressure drag affected by boundary-layer flow separation!

Surface Roughness Effects

Increased roughness $(\varepsilon/L) \rightarrow$

- induces transition to turbulent boundary-layer flow at lower Re,
- turbulent boundary-layer remains attached → lower pressure drag,
- laminar boundary-layer flow separates → higher pressure drag.

Functional Overview

Fluid-Phase Modeling

Bond Number
$$B_0 = \frac{\Delta \rho g d}{\gamma/d}$$

 $B_0 < 1 \rightarrow$ gravity negligible $B_0 \sim 0.1$ PV composites

Can ignore gravity!!

Fluid-Phase Modeling

Laplace-Young: (capillary physics)

$$\Delta P = \frac{2\gamma}{r}$$

Young-Lippmann: (EWOD)

$$= \frac{2\gamma}{r} \qquad \cos\theta = \cos\theta_0 + \frac{\varepsilon_0 \varepsilon}{2t\gamma} V^2 \qquad r = -\frac{d}{2} \sec\theta$$

Geometry:

$$r = -\frac{d}{2}\sec\theta$$

Circular pores → spherical geometry

d = pore diameter

h =distance to meniscus top

 θ = contact angle

r = radius of curvature

 $\Delta P = p_f - p_a = \text{fluid "gauge" pressure}$

$$\Delta P = \frac{-4\gamma}{d}\cos\theta \quad \& \quad h = \frac{d}{2}\left(\frac{\sin\theta - 1}{\cos\theta}\right)$$

Modeling Results

Three Regimes

- A-B: pore filling (constant r & p)
- 2. B-C: pore-surface transition ($\theta \rightarrow \theta + \pi/2$)
- 3. C-D: fluid spreading $(r \uparrow \& p \downarrow)$

Key Implications

- For stable behavior beyond peak pressure points (e.g., C or E):
 - displacement-pumping avoids uncontrolled spillage from pore,
 - hysteresis prevents siphon from pore with smallest contact angle.
- Large non-wetting contact angle not needed; anything >90 deg OK.
- Domed geometry natural → others (flat or dimple) require polarization.

Electro-Wetting on Dielectric (EWOD)

Influence of applied potential on contact angle.

Flat EWOD test geometry

Lippmann-Young Equation:

Electro-Wetting on Dielectric (EWOD)

EWOD and Meniscus Characterization

flat plates → single (capillary) pore → PV pore arrays

FTA 1000 Drop-Shape Characterization

- Microscope lens: 0.5 to 12x magnification
- Side-, top-view cameras to 60 frames/sec

EWOD Characterization Procedure

Aqueous 0.1 M NaCl Solution
Conductive Kapton XC substrate
Parylene-C (5.0 um) dielectric
Teflon AF 1600 (200 nm) hydrophobic
Applied potential: 0 (±50, 100, 150, 200) volts

Flat Plate EWOD Characterization

Substrate Effects

Aqueous 0.1 M NaCl solution
Conductive Kapton RS or XC substrates
Parylene-C (5.0 um) dielectric
Teflon AF 1600 (200 nm) hydrophobic

Fluid Composition Effects

Aqueous: 0.1 M NaCl solution
IL2: 1-Ethyl-3-methylimidazolium acetate
IL4: 1-Ethyl-3-methylimidazolium methyl sulfate
Conductive Kapton RS substrate
Parylene-C (5.0 um) dielectric
Teflon AF 1600 (200 nm) hydrophobic

Key Implications

- Aqueous (0.1 M NaCl) fluids show larger $\Delta\theta$ versus applied potential,
- $\Delta\theta$ hysteresis due to variations in surface electrode layer properties.

Layer Deposition Effects

Fabrication

EWOD experiments:

- Flat specimens for electroding and IL shape control studies.
- Glass capillary "single-pore analogs" for meniscus shape control studies.

PV composites experiments:

- Non-functional prototypes for fabrication technique assessment.
- Functional PV composite prototypes for fluid control and pumping demonstrations.

Laser Micromachining System

Higher-speed possible via laser raster with stationary workpiece.

PV Composite Prototyping

5-Layer Laminate Design

Processing Steps:

- Kapton RS bonded to Cirlex then laser micromachined to create pores and channels,
- Glass capillary bonded to main channel for external-fluidic connection,
- Kapton HN bonded to seal channels,
- Assembly vapor-coated with Parylene-C and spin-coated with Teflon AF.

EWOD Electroding in PV Composites

Materials; thicknesses; and processing challenges

Pore Cross-Section

Key Challenges

- Require EWOD
 electroding on pore walls
 and surface at exit;
- Must avoid conductive paths between IL and solid-phase.

Fluid Height Control in Pores

- Objective: assess uniformity of fluid filling of pores.
- Setup: poro-vascular prototype without electroding layers:
 - 1000 μm diameter pores, 8 x 8 array,
 - o external displacement pump control,
 - water, isopropyl alcohol fluids.
- Measurements:
 - o qualitative video

Results

- Fluid constrictions at pore entries allowed uniform fluid delivery to all pores in array,
- Vascular designs with appropriate fluid curvatures needed via channel-pore geometry and surface coatings to assure uniform delivery.

Ongoing and Future Work

- Fluid shape-height control and characterization:
 - EWOD experimentation with glass capillaries ("single-pore") and pore-array configurations,
 - Particle additives in fluid for enhanced EWOD performance,
 - Vascular network design for filling and fluid height control in pore,
- Structural characterization and interactions:
 - Mechanical properties,
 - Deformation interactions with fluid control,
- Application to airfoil aerodynamics:
 - Wind-tunnel experiments with "static" silicone PVC models on airfoil geometry for drag, lift, and transition characterization and proof-of-concept,
 - Computational simulation of surface morphology effects on boundary layer flow using airfoil models and direct numerical simulation,
 - Computational modeling/design to determine optimal surface morphologies for airfoil control applications.